Module ariths_gen.multi_bit_circuits.multipliers.wallace_multiplier
Classes
class SignedWallaceMultiplier (a: Bus,
b: Bus,
prefix: str = '',
name: str = 's_wallace_cla',
use_csa: bool = True,
unsigned_adder_class_name: str = ariths_gen.multi_bit_circuits.adders.carry_lookahead_adder.UnsignedCarryLookaheadAdder,
**kwargs)-
Class representing signed wallace multiplier.
Signed wallace multiplier represents fast N-bit multiplier which utilizes the functionality of wallace tree reduction algorithm proposed by Chris Wallace and uses Baugh-Wooley algorithm to perform signed multiplication.
First partial products are calculated for each bit pair that form the partial product multiplication rows/columns. The csa implementation uses carry save adder components to efficiently implement reduction of partial products utilizing the parallelism of the carry save adders. At last the reduced pairs are inserted into chosen multi bit unsigned adder to execute their summation and obtain the final output bits, additional XOR gate serves the necessary sign extension. It presents a faster version of multiplier opposed to the conventional architectures that are composed of interconnected half/full adders.
Wallace tree algorithm is described more in detail here: https://en.wikipedia.org/wiki/Wallace_tree
It presents a smaller circuit in area opposed to an array multiplier but is slightly bigger then dadda because of less reduction stages.
Description of the init method.
Args
a
:Bus
- First input bus.
b
:Bus
- Second input bus.
prefix
:str
, optional- Prefix name of signed wallace multiplier. Defaults to "".
name
:str
, optional- Name of signed wallace multiplier. Defaults to "s_wallace_cla".
use_csa
:bool
, optional- Choose whether to use carry save adder architecture (True) or fully interconnected half/full adders (False). Defaults to True.
unsigned_adder_class_name
:str
, optional- Unsigned multi bit adder used to obtain final sums of products. Defaults to UnsignedCarryLookaheadAdder.
Expand source code
class SignedWallaceMultiplier(MultiplierCircuit): """Class representing signed wallace multiplier. Signed wallace multiplier represents fast N-bit multiplier which utilizes the functionality of wallace tree reduction algorithm proposed by Chris Wallace and uses Baugh-Wooley algorithm to perform signed multiplication. First partial products are calculated for each bit pair that form the partial product multiplication rows/columns. The csa implementation uses carry save adder components to efficiently implement reduction of partial products utilizing the parallelism of the carry save adders. At last the reduced pairs are inserted into chosen multi bit unsigned adder to execute their summation and obtain the final output bits, additional XOR gate serves the necessary sign extension. It presents a faster version of multiplier opposed to the conventional architectures that are composed of interconnected half/full adders. Wallace tree algorithm is described more in detail here: https://en.wikipedia.org/wiki/Wallace_tree It presents a smaller circuit in area opposed to an array multiplier but is slightly bigger then dadda because of less reduction stages. Description of the __init__ method. Args: a (Bus): First input bus. b (Bus): Second input bus. prefix (str, optional): Prefix name of signed wallace multiplier. Defaults to "". name (str, optional): Name of signed wallace multiplier. Defaults to "s_wallace_cla". use_csa (bool, optional): Choose whether to use carry save adder architecture (True) or fully interconnected half/full adders (False). Defaults to True. unsigned_adder_class_name (str, optional): Unsigned multi bit adder used to obtain final sums of products. Defaults to UnsignedCarryLookaheadAdder. """ def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "s_wallace_cla", use_csa: bool = True, unsigned_adder_class_name: str = UnsignedCarryLookaheadAdder, **kwargs): self.N = max(a.N, b.N) super().__init__(inputs=[a, b], prefix=prefix, name=name, out_N=self.N*2, signed=True, **kwargs) # Bus sign extension in case buses have different lengths self.a.bus_extend(N=self.N, prefix=a.prefix) self.b.bus_extend(N=self.N, prefix=b.prefix) # CSA IMPLEMENTATION if use_csa is True: # Initialize all rows partial products forming AND gates matrix self.rows = self.init_row_lengths() # Zero extension of partial product rows for i in range(0, len(self.rows)): self.rows[i] = Bus(prefix=self.rows[i].prefix, wires_list=[ConstantWireValue0() for _ in range(0, i)] + self.rows[i].bus) while len(self.rows) > 2: # Gradual creation of signed csa adder components to reduce the pp rows to the total count of 2 pp_index = 0 while pp_index < len(self.rows) and (pp_index+2) < len(self.rows): csa_reduction = CarrySaveAdderComponent(a=self.rows[pp_index], b=self.rows[pp_index+1], c=self.rows[pp_index+2], prefix=self.prefix+"_csa"+str(self.get_instance_num(cls=CarrySaveAdderComponent)), inner_component=True, signed=True) self.add_component(csa_reduction) # 3 pp rows have been reduced to 2 [self.rows.pop(pp_index) for i in range(3)] # Append rows of sum and carry results from csa calculation csa_sums_N = self.out.N if csa_reduction.sum_bits.N > self.out.N-1 else csa_reduction.sum_bits.N csa_sums = Bus(prefix=self.prefix+"_csa_s"+str(self.get_instance_num(cls=CarrySaveAdderComponent)), N=csa_sums_N) csa_sums.connect_bus(connecting_bus=csa_reduction.out, end_connection_pos=csa_sums_N) csa_carries_N = self.out.N if csa_reduction.carry_bits.N > self.out.N-1 else csa_reduction.carry_bits.N csa_carries = Bus(prefix=self.prefix+"_csa_c"+str(self.get_instance_num(cls=CarrySaveAdderComponent)), N=csa_carries_N) csa_carries.connect_bus(connecting_bus=csa_reduction.out, start_connection_pos=int(csa_reduction.out.N/2), end_connection_pos=int(csa_reduction.out.N/2)+csa_carries.N, offset=int(csa_reduction.out.N/2)) self.rows.insert(pp_index, csa_carries) self.rows.insert(pp_index, csa_sums) # Update of the number of pp rows pp_index += 2 # Output generation # 1 bit multiplier case if self.N == 1: self.out.connect(0, self.get_previous_component().out) self.out.connect(1, ConstantWireValue0()) return # 2 bit multiplier case elif self.N == 2: self.out.connect(0, self.components[0].out) obj_ha = HalfAdder(a=self.components[1].out, b=self.components[2].out, prefix=self.prefix+"_ha"+str(self.get_instance_num(cls=HalfAdder))) self.add_component(obj_ha) self.out.connect(1, obj_ha.get_sum_wire()) obj_fa = FullAdder(a=self.get_previous_component().get_carry_wire(), b=ConstantWireValue1(), c=self.components[3].out, prefix=self.prefix+"_fa"+str(self.get_instance_num(cls=FullAdder))) self.add_component(obj_fa) self.out.connect(2, obj_fa.get_sum_wire()) self.out.connect(3, obj_fa.get_carry_wire()) # Final addition of remaining bits using chosen unsigned multi bit adder else: # Obtain proper adder name with its bit width (columns bit pairs minus the first alone bit) adder_name = unsigned_adder_class_name(a=a, b=b).prefix + str(self.rows[0].N) adder_a = Bus(prefix="a", N=self.rows[0].N) adder_b = Bus(prefix="b", N=self.rows[1].N) [adder_a.connect(w, self.rows[0].get_wire(w)) for w in range(0, self.rows[0].N)] [adder_b.connect(w, self.rows[1].get_wire(w)) for w in range(0, self.rows[1].N)] final_adder = unsigned_adder_class_name(a=adder_a, b=adder_b, prefix=self.prefix, name=adder_name, inner_component=True, **kwargs) self.add_component(final_adder) [self.out.connect(o, final_adder.out.get_wire(o), inserted_wire_desired_index=o) for o in range(0, final_adder.out.N-1)] # Final XOR to ensure proper sign extension obj_xor = XorGate(ConstantWireValue1(), self.out.get_wire(self.out.N-1), prefix=self.prefix+"_xor"+str(self.get_instance_num(cls=XorGate)), parent_component=self) self.add_component(obj_xor) self.out.connect(self.out.N-1, obj_xor.out) # FULLY INTERCONNECTED HAs/FAs IMPLEMENTATION else: # Initialize all columns partial products forming AND/NAND gates matrix based on Baugh-Wooley multiplication self.columns = self.init_column_heights() # Not used for 1 bit multiplier if self.N != 1: # Adding constant wire with value 1 to achieve signedness based on Baugh-Wooley multiplication algorithm # (adding constant value bit to last column (with one bit) to combine them in XOR gate to get the correct final multplication output bit at the end) self.columns[self.N].insert(1, ConstantWireValue1()) self.update_column_heights(curr_column=self.N, curr_height_change=1) # Perform reduction until all columns have 2 or less bits in them while not all(height <= 2 for (height, *_) in self.columns): col = 0 while col < len(self.columns): # If column has exactly 3 bits in height and all previous columns has maximum of 2 bits in height, combine them in a half adder if self.get_column_height(col) == 3 and all(height <= 2 for (height, *_) in self.columns[0:col-1]): # Add half adder and also AND/NAND gates if neccesarry (via add_column_wire invocation) into list of circuit components obj_adder = HalfAdder(self.add_column_wire(column=col, bit=0), self.add_column_wire(column=col, bit=1), prefix=self.prefix+"_ha"+str(self.get_instance_num(cls=HalfAdder))) self.add_component(obj_adder) # Update the number of current and next column wires self.update_column_heights(curr_column=col, curr_height_change=-1, next_column=col+1, next_height_change=1) # Update current and next column wires arrangement # add ha's generated sum to the bottom of current column # add ha's generated cout to the top of next column self.update_column_wires(curr_column=col, next_column=col+1, adder=self.get_previous_component(1)) # If column has more than 3 bits in height, combine them in a full adder elif self.get_column_height(col) > 3: # Add full adder and also AND/NAND gates if neccesarry (via add_column_wire invocation) into list of circuit components obj_adder = FullAdder(self.add_column_wire(column=col, bit=0), self.add_column_wire(column=col, bit=1), self.add_column_wire(column=col, bit=2), prefix=self.prefix+"_fa"+str(self.get_instance_num(cls=FullAdder))) self.add_component(obj_adder) # Update the number of current and next column wires self.update_column_heights(curr_column=col, curr_height_change=-2, next_column=col+1, next_height_change=1) # Update current and next column wires arrangement # add fa's generated sum to the bottom of current column # add fa's generated cout to the top of next column self.update_column_wires(curr_column=col, next_column=col+1, adder=self.get_previous_component(1)) col += 1 # Output generation # First output bit from single first pp AND gate self.out.connect(0, self.add_column_wire(column=0, bit=0)) # Final addition of remaining bits # 1 bit multiplier case if self.N == 1: self.out.connect(1, ConstantWireValue0()) return # 2 bit multiplier case elif self.N == 2: obj_ha = HalfAdder(self.add_column_wire(column=1, bit=0), self.add_column_wire(column=1, bit=1), prefix=self.prefix+"_ha"+str(self.get_instance_num(cls=HalfAdder))) self.add_component(obj_ha) self.out.connect(1, obj_ha.get_sum_wire()) obj_fa = FullAdder(self.get_previous_component().get_carry_wire(), self.add_column_wire(column=2, bit=0), self.add_column_wire(column=2, bit=1), prefix=self.prefix+"_fa"+str(self.get_instance_num(cls=FullAdder))) self.add_component(obj_fa) self.out.connect(2, obj_fa.get_sum_wire()) self.out.connect(3, obj_fa.get_carry_wire()) # Final addition of remaining bits using chosen unsigned multi bit adder else: # Obtain proper adder name with its bit width (columns bit pairs minus the first alone bit) adder_name = unsigned_adder_class_name(a=a, b=b).prefix + str(len(self.columns)-1) adder_a = Bus(prefix=f"a", wires_list=[self.add_column_wire(column=col, bit=0) for col in range(1, len(self.columns))]) adder_b = Bus(prefix=f"b", wires_list=[self.add_column_wire(column=col, bit=1) for col in range(1, len(self.columns))]) final_adder = unsigned_adder_class_name(a=adder_a, b=adder_b, prefix=self.prefix, name=adder_name, inner_component=True, **kwargs) self.add_component(final_adder) [self.out.connect(o, final_adder.out.get_wire(o-1), inserted_wire_desired_index=o-1) for o in range(1, len(self.out.bus))] # Final XOR to ensure proper sign extension obj_xor = XorGate(ConstantWireValue1(), self.out.get_wire(self.out.N-1), prefix=self.prefix+"_xor"+str(self.get_instance_num(cls=XorGate)), parent_component=self) self.add_component(obj_xor) self.out.connect(self.out.N-1, obj_xor.out)
Ancestors
Inherited members
MultiplierCircuit
:add_column_wire
add_column_wires
add_component
add_row_wires
get_blif_code_flat
get_blif_code_hier
get_c_code_flat
get_c_code_hier
get_cgp_code_flat
get_circuit_blif
get_circuit_c
get_circuit_def
get_circuit_gates
get_circuit_v
get_circuit_wire_index
get_circuit_wires
get_column_height
get_column_wire
get_component_types
get_declaration_blif
get_declaration_c_flat
get_declaration_c_hier
get_declaration_v_flat
get_declaration_v_hier
get_declarations_c_hier
get_declarations_v_hier
get_function_blif_flat
get_function_block_blif
get_function_block_c
get_function_block_v
get_function_blocks_blif
get_function_blocks_c
get_function_blocks_v
get_function_out_blif
get_function_out_c_flat
get_function_out_c_hier
get_function_out_python_flat
get_function_out_v_flat
get_function_out_v_hier
get_hier_subcomponent_def
get_includes_c
get_init_c_flat
get_init_c_hier
get_init_python_flat
get_init_v_flat
get_init_v_hier
get_instance_num
get_invocation_blif_hier
get_invocations_blif_hier
get_maximum_height
get_multi_bit_components
get_one_bit_components
get_out_invocation_c
get_out_invocation_v
get_outputs_cgp
get_parameters_cgp
get_previous_component
get_previous_partial_product
get_prototype_blif
get_prototype_c
get_prototype_python
get_prototype_v
get_python_code_flat
get_triplets_cgp
get_unique_types
get_v_code_flat
get_v_code_hier
init_column_heights
init_row_lengths
save_wire_id
update_column_heights
update_column_wires
class UnsignedWallaceMultiplier (a: Bus,
b: Bus,
prefix: str = '',
name: str = 'u_wallace_cla',
use_csa: bool = True,
unsigned_adder_class_name: str = ariths_gen.multi_bit_circuits.adders.carry_lookahead_adder.UnsignedCarryLookaheadAdder,
**kwargs)-
Class representing unsigned wallace multiplier.
Unsigned wallace multiplier represents fast N-bit multiplier which utilizes the functionality of wallace tree reduction algorithm proposed by Chris Wallace.
First partial products are calculated for each bit pair that form the partial product multiplication rows/columns. At last the reduced pairs are inserted into the chosen multi bit unsigned adder to execute their summation and obtain the final output bits.
The multiplier can be build from carry save adders or fully connected half/full adders (greater delay).
The csa implementation uses carry save adder components to efficiently implement reduction of partial products utilizing the parallelism of the carry save adders. At last the reduced pairs are inserted into chosen multi bit unsigned adder to execute their summation and obtain the final output bits. It presents a faster version of multiplier opposed to the conventional architectures that are composed of interconnected half/full adders.
Wallace tree algorithm is described more in detail here: https://en.wikipedia.org/wiki/Wallace_tree
It presents a smaller circuit in area opposed to an array multiplier but is slightly bigger then dadda because of less reduction stages.
CSA IMPLEMENTATION: PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0 │ │ │ │ │ │ │ │ │ │ ┌▼──▼──▼┐ ┌▼──▼──▼┐ │ │ │ CSA │ │ CSA │ │ │ └─┬───┬─┘ └─┬───┬─┘ │ │ │c1 │s1 │c0 │s0 └┐ │ ┌──┘ └────┐ │ ┌┘ ┌▼──▼──▼┐ ┌▼──▼──▼┐ │ CSA │ │ CSA │ └─┬───┬─┘ └─┬───┬─┘ │c4 │s4 ┌───────┘c3 │s3 │ └──┐ │ ┌────────┘ │ ┌▼──▼──▼┐ │ │ CSA │ │ └─┬───┬─┘ │ ┌────┘c5 │s5 │ │ ┌─────┘ ┌▼──▼──▼┐ │ CSA │ └─┬───┬─┘ │c6 │s6 ┌─▼───▼─┐ │ CPA │ └───┬───┘ o
Description of the init method.
Args
a
:Bus
- First input bus.
b
:Bus
- Second input bus.
prefix
:str
, optional- Prefix name of unsigned wallace multiplier. Defaults to "".
name
:str
, optional- Name of unsigned wallace multiplier. Defaults to "u_wallace_cla".
use_csa
:bool
, optional- Choose whether to use carry save adder architecture (True) or fully interconnected half/full adders (False). Defaults to True.
unsigned_adder_class_name
:str
, optional- Unsigned multi bit adder used to obtain final sums of products. Defaults to UnsignedCarryLookaheadAdder.
Expand source code
class UnsignedWallaceMultiplier(MultiplierCircuit): """Class representing unsigned wallace multiplier. Unsigned wallace multiplier represents fast N-bit multiplier which utilizes the functionality of wallace tree reduction algorithm proposed by Chris Wallace. First partial products are calculated for each bit pair that form the partial product multiplication rows/columns. At last the reduced pairs are inserted into the chosen multi bit unsigned adder to execute their summation and obtain the final output bits. The multiplier can be build from carry save adders or fully connected half/full adders (greater delay). The csa implementation uses carry save adder components to efficiently implement reduction of partial products utilizing the parallelism of the carry save adders. At last the reduced pairs are inserted into chosen multi bit unsigned adder to execute their summation and obtain the final output bits. It presents a faster version of multiplier opposed to the conventional architectures that are composed of interconnected half/full adders. Wallace tree algorithm is described more in detail here: https://en.wikipedia.org/wiki/Wallace_tree It presents a smaller circuit in area opposed to an array multiplier but is slightly bigger then dadda because of less reduction stages. ``` CSA IMPLEMENTATION: PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0 │ │ │ │ │ │ │ │ │ │ ┌▼──▼──▼┐ ┌▼──▼──▼┐ │ │ │ CSA │ │ CSA │ │ │ └─┬───┬─┘ └─┬───┬─┘ │ │ │c1 │s1 │c0 │s0 └┐ │ ┌──┘ └────┐ │ ┌┘ ┌▼──▼──▼┐ ┌▼──▼──▼┐ │ CSA │ │ CSA │ └─┬───┬─┘ └─┬───┬─┘ │c4 │s4 ┌───────┘c3 │s3 │ └──┐ │ ┌────────┘ │ ┌▼──▼──▼┐ │ │ CSA │ │ └─┬───┬─┘ │ ┌────┘c5 │s5 │ │ ┌─────┘ ┌▼──▼──▼┐ │ CSA │ └─┬───┬─┘ │c6 │s6 ┌─▼───▼─┐ │ CPA │ └───┬───┘ o ``` Description of the __init__ method. Args: a (Bus): First input bus. b (Bus): Second input bus. prefix (str, optional): Prefix name of unsigned wallace multiplier. Defaults to "". name (str, optional): Name of unsigned wallace multiplier. Defaults to "u_wallace_cla". use_csa (bool, optional): Choose whether to use carry save adder architecture (True) or fully interconnected half/full adders (False). Defaults to True. unsigned_adder_class_name (str, optional): Unsigned multi bit adder used to obtain final sums of products. Defaults to UnsignedCarryLookaheadAdder. """ def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "u_wallace_cla", use_csa: bool = True, unsigned_adder_class_name: str = UnsignedCarryLookaheadAdder, **kwargs): self.N = max(a.N, b.N) super().__init__(inputs=[a, b], prefix=prefix, name=name, out_N=self.N*2, **kwargs) # Bus sign extension in case buses have different lengths self.a.bus_extend(N=self.N, prefix=a.prefix) self.b.bus_extend(N=self.N, prefix=b.prefix) # CSA IMPLEMENTATION if use_csa is True: # Initialize all rows partial products forming AND gates matrix self.rows = self.init_row_lengths() # Zero extension of partial product rows for i in range(0, len(self.rows)): self.rows[i] = Bus(prefix=self.rows[i].prefix, wires_list=[ConstantWireValue0() for _ in range(0, i)] + self.rows[i].bus) while len(self.rows) > 2: # Gradual creation of unsigned csa adder components to reduce the pp rows to the total count of 2 pp_index = 0 while pp_index < len(self.rows) and (pp_index+2) < len(self.rows): csa_reduction = CarrySaveAdderComponent(a=self.rows[pp_index], b=self.rows[pp_index+1], c=self.rows[pp_index+2], prefix=self.prefix+"_csa"+str(self.get_instance_num(cls=CarrySaveAdderComponent)), inner_component=True) self.add_component(csa_reduction) # 3 pp rows have been reduced to 2 [self.rows.pop(pp_index) for i in range(3)] # Append rows of sum and carry results from csa calculation csa_sums_N = self.out.N if csa_reduction.sum_bits.N > self.out.N-1 else csa_reduction.sum_bits.N csa_sums = Bus(prefix=self.prefix+"_csa_s"+str(self.get_instance_num(cls=CarrySaveAdderComponent)), N=csa_sums_N) csa_sums.connect_bus(connecting_bus=csa_reduction.out, end_connection_pos=csa_sums_N) csa_carries_N = self.out.N if csa_reduction.carry_bits.N > self.out.N-1 else csa_reduction.carry_bits.N csa_carries = Bus(prefix=self.prefix+"_csa_c"+str(self.get_instance_num(cls=CarrySaveAdderComponent)), N=csa_carries_N) csa_carries.connect_bus(connecting_bus=csa_reduction.out, start_connection_pos=int(csa_reduction.out.N/2), end_connection_pos=int(csa_reduction.out.N/2)+csa_carries.N, offset=int(csa_reduction.out.N/2)) self.rows.insert(pp_index, csa_carries) self.rows.insert(pp_index, csa_sums) # Update of the number of pp rows pp_index += 2 # Output generation # 1 bit multiplier case if self.N == 1: self.out.connect(0, self.get_previous_component().out) self.out.connect(1, ConstantWireValue0()) # 2 bit multiplier case elif self.N == 2: self.out.connect(0, self.components[0].out) obj_ha = HalfAdder(a=self.components[1].out, b=self.components[2].out, prefix=self.prefix+"_ha"+str(self.get_instance_num(cls=HalfAdder))) self.add_component(obj_ha) self.out.connect(1, obj_ha.get_sum_wire()) obj_ha = HalfAdder(a=self.get_previous_component().get_carry_wire(), b=self.components[3].out, prefix=self.prefix+"_ha"+str(self.get_instance_num(cls=HalfAdder))) self.add_component(obj_ha) self.out.connect(2, obj_ha.get_sum_wire()) self.out.connect(3, obj_ha.get_carry_wire()) # Final addition of remaining bits using chosen unsigned multi bit adder else: # Obtain proper adder name with its bit width (columns bit pairs minus the first alone bit) adder_name = unsigned_adder_class_name(a=a, b=b).prefix + str(self.rows[0].N) adder_a = Bus(prefix="a", N=self.rows[0].N) adder_b = Bus(prefix="b", N=self.rows[1].N) [adder_a.connect(w, self.rows[0].get_wire(w)) for w in range(0, self.rows[0].N)] [adder_b.connect(w, self.rows[1].get_wire(w)) for w in range(0, self.rows[1].N)] final_adder = unsigned_adder_class_name(a=adder_a, b=adder_b, prefix=self.prefix, name=adder_name, inner_component=True, **kwargs) self.add_component(final_adder) [self.out.connect(o, final_adder.out.get_wire(o), inserted_wire_desired_index=o) for o in range(0, final_adder.out.N-1)] # FULLY INTERCONNECTED HAs/FAs IMPLEMENTATION else: # Initialize all columns partial products forming AND gates matrix self.columns = self.init_column_heights() # Perform reduction until all columns have 2 or less bits in them while not all(height <= 2 for (height, *_) in self.columns): col = 0 while col < len(self.columns): # If column has exactly 3 bits in height and all previous columns has maximum of 2 bits in height, combine them in a half adder if self.get_column_height(col) == 3 and all(height <= 2 for (height, *_) in self.columns[0:col-1]): # Add half adder and also AND gates if neccesarry (via add_column_wire invocation) into list of circuit components obj_adder = HalfAdder(self.add_column_wire(column=col, bit=0), self.add_column_wire(column=col, bit=1), prefix=self.prefix+"_ha"+str(self.get_instance_num(cls=HalfAdder))) self.add_component(obj_adder) # Update the number of current and next column wires self.update_column_heights(curr_column=col, curr_height_change=-1, next_column=col+1, next_height_change=1) # Update current and next column wires arrangement # add ha's generated sum to the bottom of current column # add ha's generated cout to the top of next column self.update_column_wires(curr_column=col, next_column=col+1, adder=self.get_previous_component(1)) # If column has more than 3 bits in height, combine them in a full adder elif self.get_column_height(col) > 3: # Add full adder and also AND gates if neccesarry (via add_column_wire invocation) into list of circuit components obj_adder = FullAdder(self.add_column_wire(column=col, bit=0), self.add_column_wire(column=col, bit=1), self.add_column_wire(column=col, bit=2), prefix=self.prefix+"_fa"+str(self.get_instance_num(cls=FullAdder))) self.add_component(obj_adder) # Update the number of current and next column wires self.update_column_heights(curr_column=col, curr_height_change=-2, next_column=col+1, next_height_change=1) # Update current and next column wires arrangement # add fa's generated sum to the bottom of current column # add fa's generated cout to the top of next column self.update_column_wires(curr_column=col, next_column=col+1, adder=self.get_previous_component(1)) col += 1 # Output generation # First output bit from single first pp AND gate self.out.connect(0, self.add_column_wire(column=0, bit=0)) # Final addition of remaining bits # 1 bit multiplier case if self.N == 1: self.out.connect(1, ConstantWireValue0()) # 2 bit multiplier case elif self.N == 2: obj_ha = HalfAdder(self.add_column_wire(column=1, bit=0), self.add_column_wire(column=1, bit=1), prefix=self.prefix+"_ha"+str(self.get_instance_num(cls=HalfAdder))) self.add_component(obj_ha) self.out.connect(1, obj_ha.get_sum_wire()) obj_ha = HalfAdder(self.get_previous_component().get_carry_wire(), self.add_column_wire(column=2, bit=0), prefix=self.prefix+"_ha"+str(self.get_instance_num(cls=HalfAdder))) self.add_component(obj_ha) self.out.connect(2, obj_ha.get_sum_wire()) self.out.connect(3, obj_ha.get_carry_wire()) # Final addition of remaining bits using chosen unsigned multi bit adder else: # Obtain proper adder name with its bit width (columns bit pairs minus the first alone bit) adder_name = unsigned_adder_class_name(a=a, b=b).prefix + str(len(self.columns)-1) adder_a = Bus(prefix=f"a", wires_list=[self.add_column_wire(column=col, bit=0) for col in range(1, len(self.columns))]) adder_b = Bus(prefix=f"b", wires_list=[self.add_column_wire(column=col, bit=1) for col in range(1, len(self.columns))]) final_adder = unsigned_adder_class_name(a=adder_a, b=adder_b, prefix=self.prefix, name=adder_name, inner_component=True, **kwargs) self.add_component(final_adder) [self.out.connect(o, final_adder.out.get_wire(o-1), inserted_wire_desired_index=o-1) for o in range(1, len(self.out.bus))]
Ancestors
Inherited members
MultiplierCircuit
:add_column_wire
add_column_wires
add_component
add_row_wires
get_blif_code_flat
get_blif_code_hier
get_c_code_flat
get_c_code_hier
get_cgp_code_flat
get_circuit_blif
get_circuit_c
get_circuit_def
get_circuit_gates
get_circuit_v
get_circuit_wire_index
get_circuit_wires
get_column_height
get_column_wire
get_component_types
get_declaration_blif
get_declaration_c_flat
get_declaration_c_hier
get_declaration_v_flat
get_declaration_v_hier
get_declarations_c_hier
get_declarations_v_hier
get_function_blif_flat
get_function_block_blif
get_function_block_c
get_function_block_v
get_function_blocks_blif
get_function_blocks_c
get_function_blocks_v
get_function_out_blif
get_function_out_c_flat
get_function_out_c_hier
get_function_out_python_flat
get_function_out_v_flat
get_function_out_v_hier
get_hier_subcomponent_def
get_includes_c
get_init_c_flat
get_init_c_hier
get_init_python_flat
get_init_v_flat
get_init_v_hier
get_instance_num
get_invocation_blif_hier
get_invocations_blif_hier
get_maximum_height
get_multi_bit_components
get_one_bit_components
get_out_invocation_c
get_out_invocation_v
get_outputs_cgp
get_parameters_cgp
get_previous_component
get_previous_partial_product
get_prototype_blif
get_prototype_c
get_prototype_python
get_prototype_v
get_python_code_flat
get_triplets_cgp
get_unique_types
get_v_code_flat
get_v_code_hier
init_column_heights
init_row_lengths
save_wire_id
update_column_heights
update_column_wires