Module ariths_gen.multi_bit_circuits.adders.ladner_fischer_adder
Classes
class SignedLadnerFischerAdder (a: Bus,
b: Bus,
prefix: str = '',
name: str = 's_lfa',
config_choice: int = 1,
**kwargs)-
Expand source code
class SignedLadnerFischerAdder(UnsignedLadnerFischerAdder, GeneralCircuit): """Class representing signed Ladner-Fischer adder (using valency-2 logic gates). The Ladner-Fischer adder belongs to a type of tree (parallel-prefix) adders. Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation The main difference between each tree adder lies in the implementation of the part 2). Ladner-Fischer adders are a family of tree adders that represent a tradeoff between Brent-Kung and Sklansky implementations. Depending on the input bitwidth, there are many possible implementation configurations, precisely: [1, ⌈log2(N)⌉-2] number for N > 4 (otherwise just 1). The structures of the individual configurations shift from inclination more towards one or the other original implementation. Ladner-Fischer networks provide tradeoff between the number of stages in the PG logic and fanout load on wires. Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation. For further circuit characteristics see the book CMOS VLSI Design. The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks. The 2) part is then composed according to the parallel-prefix adder characteristics. At last XOR gates are used to ensure proper sign extension. ``` B3 A3 B2 A2 B1 A1 B0 A0 │ │ │ │ │ │ │ │ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ │ PG │ C3 │ PG │ C2 │ PG │ C1 │ PG │ │ SUM │◄────┐│ SUM │◄──┐│ SUM │◄──┐│ SUM │◄──0 │ │ ││ │ ││ │ ││ │ └─┬──┬┬┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │ ││G3P3S3│ │││G2P2S2│ │││G1P1S1│ │││G0P0S0 │ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐ │ │ Parallel-prefix │ │ │ PG logic │ │ └─┬───────┬──────────┬──────────┬────────┘ │ │S3 │S2 │S1 │S0 ┌─▼───▼───────▼──────────▼──────────▼────────┐ │ Sum + Cout │ │ with sign extension │ └┬────┬───────┬──────────┬──────────┬────────┘ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ Cout S3 S1 S0 S0 ``` Description of the __init__ method. Args: a (Bus): First input bus. b (Bus): Second input bus. prefix (str, optional): Prefix name of signed lfa. Defaults to "". name (str, optional): Name of signed lfa. Defaults to "s_lfa". config_choice (int, optional): Tradeoff implementation choice concerning the number of stages in the PG logic and fanout load on wires. The number of choices goes from 1 up to ⌈log2(N)⌉-2 for N > 4, otherwise the choice is 1. Defaults to 1. """ def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "s_lfa", config_choice: int = 1, **kwargs): # Signed bus length extension N = max(a.N, b.N) a.bus_extend(N=N, prefix=a.prefix, desired_extension_wire=a.get_wire(a.N-1)) b.bus_extend(N=N, prefix=b.prefix, desired_extension_wire=b.get_wire(b.N-1)) super().__init__(a=a, b=b, prefix=prefix, name=name, config_choice=config_choice, signed=True, **kwargs) # Additional XOR gates to ensure correct sign extension in case of sign addition self.add_component(XorGate(self.a.get_wire(self.N-1), self.b.get_wire(self.N-1), prefix=self.prefix+"_xor"+str(self.get_instance_num(cls=XorGate)), parent_component=self)) self.add_component(XorGate(self.get_previous_component().out, self.get_previous_component(2).get_generate_wire(), prefix=self.prefix+"_xor"+str(self.get_instance_num(cls=XorGate)), parent_component=self)) self.out.connect(self.N, self.get_previous_component().out)Class representing signed Ladner-Fischer adder (using valency-2 logic gates).
The Ladner-Fischer adder belongs to a type of tree (parallel-prefix) adders. Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation The main difference between each tree adder lies in the implementation of the part 2).
Ladner-Fischer adders are a family of tree adders that represent a tradeoff between Brent-Kung and Sklansky implementations. Depending on the input bitwidth, there are many possible implementation configurations, precisely: [1, ⌈log2(N)⌉-2] number for N > 4 (otherwise just 1). The structures of the individual configurations shift from inclination more towards one or the other original implementation.
Ladner-Fischer networks provide tradeoff between the number of stages in the PG logic and fanout load on wires.
Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation. For further circuit characteristics see the book CMOS VLSI Design.
The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks. The 2) part is then composed according to the parallel-prefix adder characteristics. At last XOR gates are used to ensure proper sign extension.
B3 A3 B2 A2 B1 A1 B0 A0 │ │ │ │ │ │ │ │ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ │ PG │ C3 │ PG │ C2 │ PG │ C1 │ PG │ │ SUM │◄────┐│ SUM │◄──┐│ SUM │◄──┐│ SUM │◄──0 │ │ ││ │ ││ │ ││ │ └─┬──┬┬┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │ ││G3P3S3│ │││G2P2S2│ │││G1P1S1│ │││G0P0S0 │ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐ │ │ Parallel-prefix │ │ │ PG logic │ │ └─┬───────┬──────────┬──────────┬────────┘ │ │S3 │S2 │S1 │S0 ┌─▼───▼───────▼──────────▼──────────▼────────┐ │ Sum + Cout │ │ with sign extension │ └┬────┬───────┬──────────┬──────────┬────────┘ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ Cout S3 S1 S0 S0Description of the init method.
Args
a:Bus- First input bus.
b:Bus- Second input bus.
prefix:str, optional- Prefix name of signed lfa. Defaults to "".
name:str, optional- Name of signed lfa. Defaults to "s_lfa".
config_choice:int, optional- Tradeoff implementation choice concerning the number of stages in the PG logic and fanout load on wires. The number of choices goes from 1 up to ⌈log2(N)⌉-2 for N > 4, otherwise the choice is 1. Defaults to 1.
Ancestors
Inherited members
UnsignedLadnerFischerAdder:add_componentget_blif_code_flatget_blif_code_hierget_c_code_flatget_c_code_hierget_cgp_code_flatget_circuit_blifget_circuit_cget_circuit_defget_circuit_gatesget_circuit_vget_circuit_wire_indexget_circuit_wiresget_component_typesget_declaration_blifget_declaration_c_flatget_declaration_c_hierget_declaration_v_flatget_declaration_v_hierget_declarations_c_hierget_declarations_v_hierget_function_blif_flatget_function_block_blifget_function_block_cget_function_block_vget_function_blocks_blifget_function_blocks_cget_function_blocks_vget_function_out_blifget_function_out_c_flatget_function_out_c_hierget_function_out_python_flatget_function_out_v_flatget_function_out_v_hierget_hier_subcomponent_defget_includes_cget_init_c_flatget_init_c_hierget_init_python_flatget_init_v_flatget_init_v_hierget_instance_numget_invocation_blif_hierget_invocations_blif_hierget_multi_bit_componentsget_one_bit_componentsget_out_invocation_cget_out_invocation_vget_outputs_cgpget_parameters_cgpget_previous_componentget_prototype_blifget_prototype_cget_prototype_pythonget_prototype_vget_python_code_flatget_triplets_cgpget_unique_typesget_v_code_flatget_v_code_hiersave_wire_id
class UnsignedLadnerFischerAdder (a: Bus,
b: Bus,
prefix: str = '',
name: str = 'u_lfa',
config_choice: int = 1,
**kwargs)-
Expand source code
class UnsignedLadnerFischerAdder(GeneralCircuit): """Class representing unsigned Ladner-Fischer adder (using valency-2 logic gates). The Ladner-Fischer adder belongs to a type of tree (parallel-prefix) adders. Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation The main difference between each tree adder lies in the implementation of the part 2). Ladner-Fischer adders are a family of tree adders that represent a tradeoff between Brent-Kung and Sklansky implementations. Depending on the input bitwidth, there are many possible implementation configurations, precisely: [1, ⌈log2(N)⌉-2] number for N > 4 (otherwise just 1). The structures of the individual configurations shift from inclination more towards one or the other original implementation. Ladner-Fischer networks provide tradeoff between the number of stages in the PG logic and fanout load on wires. Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation. For further circuit characteristics see the book CMOS VLSI Design. The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks. The 2) part is then composed according to the parallel-prefix adder characteristics. ``` B3 A3 B2 A2 B1 A1 B0 A0 │ │ │ │ │ │ │ │ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ │ PG │ C3 │ PG │ C2 │ PG │ C1 │ PG │ │ SUM │◄────┐│ SUM │◄──┐│ SUM │◄──┐│ SUM │◄──0 │ │ ││ │ ││ │ ││ │ └─┬──┬┬┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │ ││G3P3S3│ │││G2P2S2│ │││G1P1S1│ │││G0P0S0 │ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐ │ │ Parallel-prefix │ │ │ PG logic │ │ └─┬───────┬──────────┬──────────┬────────┘ │ │S3 │S2 │S1 │S0 ┌─▼───▼───────▼──────────▼──────────▼────────┐ │ Sum + Cout │ │ logic │ └┬────┬───────┬──────────┬──────────┬────────┘ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ Cout S3 S1 S0 S0 ``` Description of the __init__ method. Args: a (Bus): First input bus. b (Bus): Second input bus. prefix (str, optional): Prefix name of unsigned lfa. Defaults to "". name (str, optional): Name of unsigned lfa. Defaults to "u_lfa". config_choice (int, optional): Tradeoff implementation choice concerning the number of stages in the PG logic and fanout load on wires. The number of choices goes from 1 up to ⌈log2(N)⌉-2 for N > 4, otherwise the choice is 1. Defaults to 1. """ def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "u_lfa", config_choice: int = 1, **kwargs): self.N = max(a.N, b.N) super().__init__(inputs=[a, b], prefix=prefix, name=name, out_N=self.N+1, **kwargs) # Bus sign extension in case buses have different lengths self.a.bus_extend(N=self.N, prefix=a.prefix) self.b.bus_extend(N=self.N, prefix=b.prefix) cin = ConstantWireValue0() # Configuration setting self.config_choice = config_choice if self.N > 4: assert self.config_choice > 0 and self.config_choice <= math.ceil(math.log(self.N, 2))-2, "The configuration choice must fall in a range [1, ⌈log2(N)⌉-2] for N > 4." else: assert self.config_choice == 1, "The configuration choice for N <= 4 is only 1." # Lists of list containing all propagate/generate wires self.propagate_sig = [] self.generate_sig = [] # Cin0 used as a first generate wire for obtaining next carry bits self.generate_sig.append([cin]) # The configuration choice offset used to appropriately interconnect PG logic cells in each stage and to determine the number of stages for a given bit index config_offset = 2**self.config_choice # For each bit pair proceed with three stages of PPAs (Generate PG signals, Prefix computation (PG logic), Computation and connection of outputs) # NOTE In the implementation below, both the first and third stages are handled by the PG FAs for i_wire in range(self.N): # 1st + 3rd stage: Generate PG signals + Computation and connection of outputs self.add_component(PGSumLogic(self.a.get_wire(i_wire), self.b.get_wire(i_wire), self.generate_sig[i_wire][-1], prefix=self.prefix+"_pg_sum"+str(self.get_instance_num(cls=PGSumLogic)))) self.generate_sig.append([self.get_previous_component().get_generate_wire()]) self.propagate_sig.append([self.get_previous_component().get_propagate_wire()]) self.out.connect(i_wire, self.get_previous_component().get_sum_wire()) if i_wire == self.N-1: self.add_component(GreyCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell)))) self.out.connect(self.N, self.get_previous_component().get_generate_wire()) # 2nd stage: Prefix Computation (PG logic) # For all bit indexes expect for the last one, proceed with the parralel prefix PG logic else: if (i_wire+2) % config_offset == 0 or (i_wire < 4 and i_wire % 2 == 0): # These input bits form a Sklansky adder structure binary_form = bin(i_wire+1)[2:][::-1] # +1 to obtain proper carry bit index (index 0 corresponds to Cin) index_stages = len(binary_form) prev_stage_int_value = 0 for stage, value in enumerate(binary_form): if value == '1': # Grey cell if stage == index_stages-1: if index_stages == 1: # Bit index with only one stage self.add_component(GreyCell(self.generate_sig[i_wire+1][0], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell)))) else: # Bit index contains multiple stages, GC is its last stage self.add_component(GreyCell(self.get_previous_component().get_generate_wire(), self.get_previous_component().get_propagate_wire(), self.generate_sig[i_wire-prev_stage_int_value][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell)))) # Black cell else: # If bit index contains more than one stage, every stage except for the last one contains a Black cell self.add_component(BlackCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][-1], self.generate_sig[i_wire-prev_stage_int_value][stage], self.propagate_sig[i_wire-1-prev_stage_int_value][stage], prefix=self.prefix+"_bc"+str(self.get_instance_num(cls=BlackCell)))) self.propagate_sig[i_wire].append(self.get_previous_component().get_propagate_wire()) self.generate_sig[i_wire+1].append(self.get_previous_component().get_generate_wire()) prev_stage_int_value += 2**stage else: # Other input bits are implemented in the same fasion as in the Brent-Kung adder structure index_stages = math.log(i_wire+2, 2) # +1 because indexes start from 0 and additional +1 because the first generated carry is actually the second carry after cin (the previous cin has 0 stages) if int(index_stages) == index_stages: # Bit indexes that are powers of 2 for stage in range(int(index_stages)): # Grey cell if stage == index_stages-1: if stage == 0: # Bit index with only one stage self.add_component(GreyCell(self.generate_sig[i_wire+1][0], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][0], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell)))) else: # Bit index contains multiple stages, GC is its last stage self.add_component(GreyCell(self.get_previous_component().get_generate_wire(), self.get_previous_component().get_propagate_wire(), self.generate_sig[(i_wire+1)-(2**stage)][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell)))) # Black cell else: # If bit index contains more than one stage, every stage except for the last one contains a Black cell self.add_component(BlackCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][-1], self.generate_sig[(i_wire+1)-(2**stage)][stage], self.propagate_sig[i_wire-(2**stage)][stage], prefix=self.prefix+"_bc"+str(self.get_instance_num(cls=BlackCell)))) self.propagate_sig[i_wire].append(self.get_previous_component().get_propagate_wire()) self.generate_sig[i_wire+1].append(self.get_previous_component().get_generate_wire()) elif i_wire % 2 == 0: # Even-numbered input indexes # Different handling based on the chosen configuration and the corresponding PG logic structure if i_wire+2 <= config_offset: # Same behaviour as in the case of a regular Brent-Kung lower_closest_power_of_two = 2**math.floor(math.log(i_wire+2, 2)) # i.e. 2^3 = 8 higher_closest_power_of_two = 2**math.ceil(math.log(i_wire+2, 2)) # i.e. 2^4 = 16 down_diff = (i_wire+2) - lower_closest_power_of_two up_diff = higher_closest_power_of_two - (i_wire+2) else: # The number of stages for these indexes is different as opposed to a regular Brent-Kung implementation # Determine the closest lower and higher multiples of the input config offset lower_closest_multiple = ((i_wire+2) // config_offset) * config_offset higher_closest_multiple = lower_closest_multiple + config_offset down_diff = abs((i_wire+2) - lower_closest_multiple) up_diff = abs(higher_closest_multiple - (i_wire+2)) diff_power = up_diff if up_diff < down_diff else down_diff index_stages = math.floor(math.log(diff_power, 2))+1 for stage in range(index_stages): # Black cell if stage != index_stages-1: # Bit index contains more than one stage, every stage except for the last one contains a Black cell self.add_component(BlackCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][-1], self.generate_sig[(i_wire+1)-(2**stage)][stage], self.propagate_sig[i_wire-(2**stage)][stage], prefix=self.prefix+"_bc"+str(self.get_instance_num(cls=BlackCell)))) self.propagate_sig[i_wire].append(self.get_previous_component().get_propagate_wire()) # Grey cell else: # Bit index contains multiple stages, GC is its last stage self.add_component(GreyCell(self.get_previous_component().get_generate_wire(), self.get_previous_component().get_propagate_wire(), self.generate_sig[(i_wire+1)-(2**stage)][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell)))) self.generate_sig[i_wire+1].append(self.get_previous_component().get_generate_wire()) else: # Odd-numbered input indexes self.add_component(GreyCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell)))) self.generate_sig[i_wire+1].append(self.get_previous_component().get_generate_wire())Class representing unsigned Ladner-Fischer adder (using valency-2 logic gates).
The Ladner-Fischer adder belongs to a type of tree (parallel-prefix) adders. Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation The main difference between each tree adder lies in the implementation of the part 2).
Ladner-Fischer adders are a family of tree adders that represent a tradeoff between Brent-Kung and Sklansky implementations. Depending on the input bitwidth, there are many possible implementation configurations, precisely: [1, ⌈log2(N)⌉-2] number for N > 4 (otherwise just 1). The structures of the individual configurations shift from inclination more towards one or the other original implementation.
Ladner-Fischer networks provide tradeoff between the number of stages in the PG logic and fanout load on wires.
Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation. For further circuit characteristics see the book CMOS VLSI Design.
The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks. The 2) part is then composed according to the parallel-prefix adder characteristics.
B3 A3 B2 A2 B1 A1 B0 A0 │ │ │ │ │ │ │ │ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ │ PG │ C3 │ PG │ C2 │ PG │ C1 │ PG │ │ SUM │◄────┐│ SUM │◄──┐│ SUM │◄──┐│ SUM │◄──0 │ │ ││ │ ││ │ ││ │ └─┬──┬┬┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │ ││G3P3S3│ │││G2P2S2│ │││G1P1S1│ │││G0P0S0 │ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐ │ │ Parallel-prefix │ │ │ PG logic │ │ └─┬───────┬──────────┬──────────┬────────┘ │ │S3 │S2 │S1 │S0 ┌─▼───▼───────▼──────────▼──────────▼────────┐ │ Sum + Cout │ │ logic │ └┬────┬───────┬──────────┬──────────┬────────┘ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ Cout S3 S1 S0 S0Description of the init method.
Args
a:Bus- First input bus.
b:Bus- Second input bus.
prefix:str, optional- Prefix name of unsigned lfa. Defaults to "".
name:str, optional- Name of unsigned lfa. Defaults to "u_lfa".
config_choice:int, optional- Tradeoff implementation choice concerning the number of stages in the PG logic and fanout load on wires. The number of choices goes from 1 up to ⌈log2(N)⌉-2 for N > 4, otherwise the choice is 1. Defaults to 1.
Ancestors
Subclasses
Inherited members
GeneralCircuit:add_componentget_blif_code_flatget_blif_code_hierget_c_code_flatget_c_code_hierget_cgp_code_flatget_circuit_blifget_circuit_cget_circuit_defget_circuit_gatesget_circuit_vget_circuit_wire_indexget_circuit_wiresget_component_typesget_declaration_blifget_declaration_c_flatget_declaration_c_hierget_declaration_v_flatget_declaration_v_hierget_declarations_c_hierget_declarations_v_hierget_function_blif_flatget_function_block_blifget_function_block_cget_function_block_vget_function_blocks_blifget_function_blocks_cget_function_blocks_vget_function_out_blifget_function_out_c_flatget_function_out_c_hierget_function_out_python_flatget_function_out_v_flatget_function_out_v_hierget_hier_subcomponent_defget_includes_cget_init_c_flatget_init_c_hierget_init_python_flatget_init_v_flatget_init_v_hierget_instance_numget_invocation_blif_hierget_invocations_blif_hierget_multi_bit_componentsget_one_bit_componentsget_out_invocation_cget_out_invocation_vget_outputs_cgpget_parameters_cgpget_previous_componentget_prototype_blifget_prototype_cget_prototype_pythonget_prototype_vget_python_code_flatget_triplets_cgpget_unique_typesget_v_code_flatget_v_code_hiersave_wire_id