Module ariths_gen.multi_bit_circuits.adders.brent_kung_adder

Classes

class SignedBrentKungAdder (a: Bus,
b: Bus,
prefix: str = '',
name: str = 's_bka',
**kwargs)

Class representing signed Brent-Kung adder (using valency-2 logic gates).

The Brent-Kung adder belongs to a type of tree (parallel-prefix) adders. Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation The main difference between each tree adder lies in the implementation of the part 2).

Along with Kogge-Stone and Sklansky it is considered to be a fundamental tree adder architecture.

Brent-Kung achieves 2*log2(N)-1 stages and fanout of 2 at each stage inside 2). The adder computes prefixes for 2-bit groups. These are used to find prefixes for 4-bit groups, which in turn are used to find prefixes for 8-bit groups, and so forth. The prefixes then fan back down to compute the carries-in to each bit.

Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation. For further circuit characteristics see the book CMOS VLSI Design.

The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks. The 2) part is then composed according to the parallel-prefix adder characteristics. At last XOR gates are used to ensure proper sign extension.

  B3 A3         B2 A2       B1 A1       B0 A0
  │  │          │  │        │  │        │  │
┌─▼──▼─┐      ┌─▼──▼─┐    ┌─▼──▼─┐    ┌─▼──▼─┐
│  PG  │  C3  │  PG  │ C2 │  PG  │ C1 │  PG  │
│  SUM │◄────┐│  SUM │◄──┐│  SUM │◄──┐│  SUM │◄──0
│      │     ││      │   ││      │   ││      │
└─┬──┬┬┘     │└─┬┬┬──┘   │└─┬┬┬──┘   │└─┬┬┬──┘
  │  ││G3P3S3│  │││G2P2S2│  │││G1P1S1│  │││G0P0S0
  │ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐
  │ │            Parallel-prefix             │
  │ │               PG logic                 │
  │ └─┬───────┬──────────┬──────────┬────────┘
  │   │S3     │S2        │S1        │S0
┌─▼───▼───────▼──────────▼──────────▼────────┐
│                Sum + Cout                  │
│           with sign extension              │
└┬────┬───────┬──────────┬──────────┬────────┘
 │    │       │          │          │
 ▼    ▼       ▼          ▼          ▼
Cout  S3      S1         S0         S0

Description of the init method.

Args

a : Bus
First input bus.
b : Bus
Second input bus.
prefix : str, optional
Prefix name of signed bka. Defaults to "".
name : str, optional
Name of signed bka. Defaults to "s_bka".
Expand source code
class SignedBrentKungAdder(UnsignedBrentKungAdder, GeneralCircuit):
    """Class representing signed Brent-Kung adder (using valency-2 logic gates).

    The Brent-Kung adder belongs to a type of tree (parallel-prefix) adders.
    Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation
    The main difference between each tree adder lies in the implementation of the part 2).

    Along with Kogge-Stone and Sklansky it is considered to be a fundamental tree adder architecture.

    Brent-Kung achieves 2*log2(N)-1 stages and fanout of 2 at each stage inside 2). The adder computes prefixes for 2-bit groups.
    These are used to find prefixes for 4-bit groups, which in turn are used to find prefixes for 8-bit groups, and so forth.
    The prefixes then fan back down to compute the carries-in to each bit.

    Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation.
    For further circuit characteristics see the book CMOS VLSI Design.

    The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks.
    The 2) part is then composed according to the parallel-prefix adder characteristics.
    At last XOR gates are used to ensure proper sign extension.

    ```
      B3 A3         B2 A2       B1 A1       B0 A0
      │  │          │  │        │  │        │  │
    ┌─▼──▼─┐      ┌─▼──▼─┐    ┌─▼──▼─┐    ┌─▼──▼─┐
    │  PG  │  C3  │  PG  │ C2 │  PG  │ C1 │  PG  │
    │  SUM │◄────┐│  SUM │◄──┐│  SUM │◄──┐│  SUM │◄──0
    │      │     ││      │   ││      │   ││      │
    └─┬──┬┬┘     │└─┬┬┬──┘   │└─┬┬┬──┘   │└─┬┬┬──┘
      │  ││G3P3S3│  │││G2P2S2│  │││G1P1S1│  │││G0P0S0
      │ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐
      │ │            Parallel-prefix             │
      │ │               PG logic                 │
      │ └─┬───────┬──────────┬──────────┬────────┘
      │   │S3     │S2        │S1        │S0
    ┌─▼───▼───────▼──────────▼──────────▼────────┐
    │                Sum + Cout                  │
    │           with sign extension              │
    └┬────┬───────┬──────────┬──────────┬────────┘
     │    │       │          │          │
     ▼    ▼       ▼          ▼          ▼
    Cout  S3      S1         S0         S0
    ```

    Description of the __init__ method.

    Args:
        a (Bus): First input bus.
        b (Bus): Second input bus.
        prefix (str, optional): Prefix name of signed bka. Defaults to "".
        name (str, optional): Name of signed bka. Defaults to "s_bka".
    """
    def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "s_bka", **kwargs):
        super().__init__(a=a, b=b, prefix=prefix, name=name, signed=True, **kwargs)

        # Additional XOR gates to ensure correct sign extension in case of sign addition
        self.add_component(XorGate(self.a.get_wire(self.N-1), self.b.get_wire(self.N-1), prefix=self.prefix+"_xor"+str(self.get_instance_num(cls=XorGate)), parent_component=self))
        self.add_component(XorGate(self.get_previous_component().out, self.get_previous_component(2).get_generate_wire(), prefix=self.prefix+"_xor"+str(self.get_instance_num(cls=XorGate)), parent_component=self))
        self.out.connect(self.N, self.get_previous_component().out)

Ancestors

Inherited members

class UnsignedBrentKungAdder (a: Bus,
b: Bus,
prefix: str = '',
name: str = 'u_bka',
**kwargs)

Class representing unsigned Brent-Kung adder (using valency-2 logic gates).

The Brent-Kung adder belongs to a type of tree (parallel-prefix) adders. Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation The main difference between each tree adder lies in the implementation of the part 2).

Along with Kogge-Stone and Sklansky it is considered to be a fundamental tree adder architecture.

Brent-Kung achieves 2*log2(N)-1 stages and fanout of 2 at each stage inside 2). The adder computes prefixes for 2-bit groups. These are used to find prefixes for 4-bit groups, which in turn are used to find prefixes for 8-bit groups, and so forth. The prefixes then fan back down to compute the carries-in to each bit.

Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation. For further circuit characteristics see the book CMOS VLSI Design.

The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks. The 2) part is then composed according to the parallel-prefix adder characteristics.

  B3 A3         B2 A2       B1 A1       B0 A0
  │  │          │  │        │  │        │  │
┌─▼──▼─┐      ┌─▼──▼─┐    ┌─▼──▼─┐    ┌─▼──▼─┐
│  PG  │  C3  │  PG  │ C2 │  PG  │ C1 │  PG  │
│  SUM │◄────┐│  SUM │◄──┐│  SUM │◄──┐│  SUM │◄──0
│      │     ││      │   ││      │   ││      │
└─┬──┬┬┘     │└─┬┬┬──┘   │└─┬┬┬──┘   │└─┬┬┬──┘
  │  ││G3P3S3│  │││G2P2S2│  │││G1P1S1│  │││G0P0S0
  │ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐
  │ │            Parallel-prefix             │
  │ │               PG logic                 │
  │ └─┬───────┬──────────┬──────────┬────────┘
  │   │S3     │S2        │S1        │S0
┌─▼───▼───────▼──────────▼──────────▼────────┐
│                Sum + Cout                  │
│                   logic                    │
└┬────┬───────┬──────────┬──────────┬────────┘
 │    │       │          │          │
 ▼    ▼       ▼          ▼          ▼
Cout  S3      S1         S0         S0

Description of the init method.

Args

a : Bus
First input bus.
b : Bus
Second input bus.
prefix : str, optional
Prefix name of unsigned bka. Defaults to "".
name : str, optional
Name of unsigned bka. Defaults to "u_bka".
Expand source code
class UnsignedBrentKungAdder(GeneralCircuit):
    """Class representing unsigned Brent-Kung adder (using valency-2 logic gates).

    The Brent-Kung adder belongs to a type of tree (parallel-prefix) adders.
    Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation
    The main difference between each tree adder lies in the implementation of the part 2).

    Along with Kogge-Stone and Sklansky it is considered to be a fundamental tree adder architecture.

    Brent-Kung achieves 2*log2(N)-1 stages and fanout of 2 at each stage inside 2). The adder computes prefixes for 2-bit groups.
    These are used to find prefixes for 4-bit groups, which in turn are used to find prefixes for 8-bit groups, and so forth.
    The prefixes then fan back down to compute the carries-in to each bit.

    Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation.
    For further circuit characteristics see the book CMOS VLSI Design.

    The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks.
    The 2) part is then composed according to the parallel-prefix adder characteristics.

    ```
      B3 A3         B2 A2       B1 A1       B0 A0
      │  │          │  │        │  │        │  │
    ┌─▼──▼─┐      ┌─▼──▼─┐    ┌─▼──▼─┐    ┌─▼──▼─┐
    │  PG  │  C3  │  PG  │ C2 │  PG  │ C1 │  PG  │
    │  SUM │◄────┐│  SUM │◄──┐│  SUM │◄──┐│  SUM │◄──0
    │      │     ││      │   ││      │   ││      │
    └─┬──┬┬┘     │└─┬┬┬──┘   │└─┬┬┬──┘   │└─┬┬┬──┘
      │  ││G3P3S3│  │││G2P2S2│  │││G1P1S1│  │││G0P0S0
      │ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐
      │ │            Parallel-prefix             │
      │ │               PG logic                 │
      │ └─┬───────┬──────────┬──────────┬────────┘
      │   │S3     │S2        │S1        │S0
    ┌─▼───▼───────▼──────────▼──────────▼────────┐
    │                Sum + Cout                  │
    │                   logic                    │
    └┬────┬───────┬──────────┬──────────┬────────┘
     │    │       │          │          │
     ▼    ▼       ▼          ▼          ▼
    Cout  S3      S1         S0         S0
    ```

    Description of the __init__ method.

    Args:
        a (Bus): First input bus.
        b (Bus): Second input bus.
        prefix (str, optional): Prefix name of unsigned bka. Defaults to "".
        name (str, optional): Name of unsigned bka. Defaults to "u_bka".
    """
    def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "u_bka", **kwargs):
        self.N = max(a.N, b.N)
        super().__init__(inputs=[a, b], prefix=prefix, name=name, out_N=self.N+1, **kwargs)

        # Bus sign extension in case buses have different lengths
        self.a.bus_extend(N=self.N, prefix=a.prefix)
        self.b.bus_extend(N=self.N, prefix=b.prefix)
        cin = ConstantWireValue0()

        # Lists of list containing all propagate/generate wires
        self.propagate_sig = []
        self.generate_sig = []
        # Cin0 used as a first generate wire for obtaining next carry bits
        self.generate_sig.append([cin])

        # For each bit pair proceed with three stages of PPAs (Generate PG signals, Prefix computation (PG logic), Computation and connection of outputs)
        # NOTE In the implementation below, both the first and third stages are handled by the PG FAs
        for i_wire in range(self.N):
            # 1st + 3rd stage: Generate PG signals + Computation and connection of outputs
            self.add_component(PGSumLogic(self.a.get_wire(i_wire), self.b.get_wire(i_wire), self.generate_sig[i_wire][-1], prefix=self.prefix+"_pg_sum"+str(self.get_instance_num(cls=PGSumLogic))))
            self.generate_sig.append([self.get_previous_component().get_generate_wire()])
            self.propagate_sig.append([self.get_previous_component().get_propagate_wire()])

            self.out.connect(i_wire, self.get_previous_component().get_sum_wire())
            if i_wire == self.N-1:
                self.add_component(GreyCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell))))
                self.out.connect(self.N, self.get_previous_component().get_generate_wire())
            # 2nd stage: Prefix Computation (PG logic)
            # For all bit indexes expect for the last one, proceed with the parralel prefix PG logic
            else:
                if i_wire % 2 == 0:  # Even-numbered bit index columns
                    index_stages = math.log(i_wire+2, 2)  # +1 because indexes start from 0 and additional +1 because the first generated carry is actually the second carry after cin (the previous cin has 0 stages)
                    if int(index_stages) == index_stages:
                        for stage in range(int(index_stages)):
                            # Grey cell
                            if stage == index_stages-1:
                                if stage == 0:  # Bit index with only one stage
                                    self.add_component(GreyCell(self.generate_sig[i_wire+1][0], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][0], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell))))
                                else:  # Bit index contains multiple stages, GC is its last stage
                                    self.add_component(GreyCell(self.get_previous_component().get_generate_wire(), self.get_previous_component().get_propagate_wire(), self.generate_sig[(i_wire+1)-(2**stage)][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell))))
                            # Black cell
                            else:  # If bit index contains more than one stage, every stage except for the last one contains a Black cell
                                self.add_component(BlackCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][-1], self.generate_sig[(i_wire+1)-(2**stage)][stage], self.propagate_sig[i_wire-(2**stage)][stage], prefix=self.prefix+"_bc"+str(self.get_instance_num(cls=BlackCell))))
                                self.propagate_sig[i_wire].append(self.get_previous_component().get_propagate_wire())
                            self.generate_sig[i_wire+1].append(self.get_previous_component().get_generate_wire())
                    # Special cases (bit indexes between powers of 2)
                    else:
                        lower_closest_power_of_two = 2**math.floor(math.log(i_wire+2, 2))  # i.e. 2^3 = 8
                        higher_closest_power_of_two = 2**math.ceil(math.log(i_wire+2, 2))  # i.e. 2^4 = 16

                        up_diff = higher_closest_power_of_two - (i_wire+2)
                        down_diff = (i_wire+2) - lower_closest_power_of_two
                        diff_power = up_diff if up_diff < down_diff else down_diff
                        index_stages = math.floor(math.log(diff_power, 2))+1

                        for stage in range(index_stages):
                            # Black cell
                            if stage != index_stages-1:
                                self.add_component(BlackCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][-1], self.generate_sig[(i_wire+1)-(2**stage)][stage], self.propagate_sig[i_wire-(2**stage)][stage], prefix=self.prefix+"_bc"+str(self.get_instance_num(cls=BlackCell))))
                                self.propagate_sig[i_wire].append(self.get_previous_component().get_propagate_wire())
                            # Grey cell
                            else:
                                self.add_component(GreyCell(self.get_previous_component().get_generate_wire(), self.get_previous_component().get_propagate_wire(), self.generate_sig[(i_wire+1)-(2**stage)][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell))))
                            self.generate_sig[i_wire+1].append(self.get_previous_component().get_generate_wire())
                # Odd-numbered bit index columns
                else:
                    self.add_component(GreyCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell))))
                    self.generate_sig[i_wire+1].append(self.get_previous_component().get_generate_wire())

Ancestors

Subclasses

Inherited members